OVERVIEW

• Purpose of the study
• Historical context
• Results 1: GHG impacts from Transit
• Results 2: GHG benefits of Transit
• Next Steps
• Q&A
PURPOSE

• Understand how LTD’s emissions fit into regional, state, local goals
• Understand implications for operational decisions
• Update 2007 sustainability policy (Resolution No. 2007-027)
• Set GHG reduction goals
HISTORICAL CONTEXT

• 2007 - LTD Sustainability Policy, State GHG reduction goals set
• 2014 – LTD APTA Sustainability Commitment - Silver
• 2015 - Central Lane Scenario Planning
• 2016 - Eugene CRO – 4 goals set
• 2018 – LTD Sustainability Program Manager position; Fleet Plan grant
• 2019 - Electric bus testing, MOD pilots
GHG BENEFITS AND IMPACTS FROM TRANSIT

Net Greenhouse Gas Impacts of Transit
Emissions Produced – Emissions Displaced

Emissions Produced by Transit

Transit Operations
- Fleet vehicles fuel use
- Electricity & natural gas from buildings and stations
- Refrigerants used in vehicle air conditioning
- All other emissions sources

Emissions Benefits of Transit

Ridership Benefit
- Reduced VMT from taking the bus instead of a private auto

Land Use Benefit
- Compact development around transit facilities reduces VMT for all
- Shorter trips makes biking/walking more attractive

GHG ACCOUNTING – 3 SCOPES

SCOPE 1 DIRECT
- Fuel combustion
- Purchased electricity for own use
- Company owned vehicles

SCOPE 2 INDIRECT
- Production of purchased materials
- Outsourced activities
- Product use

SCOPE 3 INDIRECT
- Employee business travel
- Waste disposal
- Contractor owned vehicles

Gases:
- CO₂
- SF₆
- CH₄
- N₂O
- HFCs
- PFCs
GHG EMISSIONS FROM TRANSIT FY 2018

KEY LESSONS:
• Fleet matters most!
• Emissions from producing our fuel and emissions from other goods and services we buy matter too.
SCOPE 1 & 2 EMISSIONS - FY12-18

KEY LESSONS:
- Aggregate Fleet emissions have been fairly consistent over time.
- Fleet emissions represent 94%+ of emissions LTD has full control over.
FLEET EMISSIONS BY SERVICE TYPE

KEY LESSONS:
• Fixed route is largest share of total emissions
• EmX and Ridesource emissions are similar in scale
• 2018 EmX increase from EmX West opening
• Fixed Route efficiency gains between ‘12-’13; reduced vehicle miles and minor efficiency gains in ‘18.

KEY LESSONS:
• Note difference in scale between two charts
• Non-Revenue vehicle increase from increased staff/miles
• Vanpool changes due to demand
• Rural Connections: added Rhody Express and Florence-Yachats reporting to this category in ‘18.
FLEET ENERGY CONSUMPTION BY FUEL TYPE

KEY LESSON:
• 5% of LTD fleet fuel consumption is from renewables (B5 diesel, E10 gasoline).
THE CARBON CYCLE
Anthropogenic emissions: come from mining fossil fuels previously sequestered in the Earth’s crust or significant land use changes.
ANTHROPOGENIC vs. BIOGENIC EMISSIONS

Anthropogenic emissions: come from mining fossil fuels previously sequestered in the Earth’s crust.

Biogenic emissions: considered part of the natural carbon cycle.

KEY LESSON:
- Not all emissions are created equal.
- Anthropogenic ≠ biogenic
- Fossil fuels ≠ renewable fuels
FY 2018 EMISSIONS, INCLUDING BIOGENIC

KEY LESSON:
- LTD’s Biogenic emissions from renewable fuel use, not included in Scope 1 “Fleet”.

![Graph showing greenhouse gas emissions by scope and category.](chart-image-url)
LIFECYCLE EMISSIONS BY FUEL TYPES

<table>
<thead>
<tr>
<th>Fuel Type</th>
<th>GHGs by Fuel Type for 40,000 miles of travel (with error bars for range of carbon scores)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diesel (B5)</td>
<td></td>
</tr>
<tr>
<td>B20</td>
<td></td>
</tr>
<tr>
<td>R20</td>
<td></td>
</tr>
<tr>
<td>R50</td>
<td></td>
</tr>
<tr>
<td>R99</td>
<td></td>
</tr>
<tr>
<td>Diesel Hybrid (B5)</td>
<td></td>
</tr>
<tr>
<td>B20</td>
<td></td>
</tr>
<tr>
<td>R20</td>
<td></td>
</tr>
<tr>
<td>R50</td>
<td></td>
</tr>
<tr>
<td>R99</td>
<td></td>
</tr>
<tr>
<td>Gasoline Shuttle (E10)</td>
<td></td>
</tr>
<tr>
<td>Battery Electric</td>
<td></td>
</tr>
<tr>
<td>CNG</td>
<td></td>
</tr>
<tr>
<td>RNG</td>
<td></td>
</tr>
</tbody>
</table>

Greenhouse Gas Emissions (MTCO$_2$e) / 40,000 vehicle miles

KEY LESSONS:
- Opportunity abounds to reduce fleet emissions.
- LTD will study the opportunities in detail in 2020 for long-term fleet plan.
KEY LESSON:
• Supply chain emissions vary with expenditure on major projects.
KEY LESSON:
• Bus manufacturing and construction projects represent between 40-80% of supply chain emissions.
GHG BENEFITS AND IMPACTS FROM TRANSIT

Net Greenhouse Gas Impacts of Transit
Emissions Produced – Emissions Displaced

Emissions Produced by Transit

Transit Operations
- Fleet vehicles fuel use
- Electricity & natural gas from buildings and stations
- Refrigerants used in vehicle air conditioning
- All other emissions sources

Emissions Benefits of Transit

Ridership Benefit
- Reduced VMT from taking the bus instead of a private auto

Land Use Benefit
- Compact development around transit facilities reduces VMT for all
- Shorter trips makes biking/walking more attractive

Graphic Adapted from Quantifying Greenhouse Gas Emissions from Transit, APTA, 2009.

Graphic from TCRP 176 GHG Benefits from Transit User guide, 2015.
GHG BENEFITS OF RIDERSHIP

KEY LESSONS:
- Ridership benefits from transit are more than 2x the emissions from transit operations.
- Public transit is an important strategy to reduce community emissions.
GHG BENEFITS OF LAND USE EFFECT

Community Emissions vs. Transit-related GHG Benefits

KEY LESSON:
- Without transit, Eugene/Springfield emissions from passenger vehicles could be 25% larger than they are today.
NEXT STEPS

• Electric bus procurement, WA State Contract
• Technology / Fuel analysis for Fleet Plan
• GHG reduction modeling for goal setting
• Sustainability policy update
1. GET PEOPLE ON THE BUS

KEY LESSONS:

- Ridership benefits from transit are more than 2x the emissions from transit operations.
- Public transit is an important strategy to reduce community emissions.
2. FOCUS ON FLEET; THINK LIFECYCLE...

KEY LESSONS:
- Fleet matters most!
- Thinking about tailpipe emissions only is not enough. Scope 1 + Scope 3 “lifecycle” emissions matter.

![Greenhouse Gas Emissions diagram](chart.png)

<table>
<thead>
<tr>
<th>Category</th>
<th>Emissions (MT CO₂e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fleet</td>
<td>10,665</td>
</tr>
<tr>
<td>Natural Gas (owned)</td>
<td>381</td>
</tr>
<tr>
<td>Refrigerants</td>
<td>142</td>
</tr>
<tr>
<td>Electricity</td>
<td>32</td>
</tr>
<tr>
<td>Business Travel</td>
<td>510</td>
</tr>
<tr>
<td>Solid Waste</td>
<td>60</td>
</tr>
<tr>
<td>Upstream Energy Production</td>
<td>3,864</td>
</tr>
<tr>
<td>Commute</td>
<td>770</td>
</tr>
<tr>
<td>Supply Chain</td>
<td>6,000</td>
</tr>
</tbody>
</table>
3. EMISSIONS REDUCTIONS ARE POSSIBLE

Lifecycle GHGs by Fuel Type for 40,000 miles of travel (with error bars for range of carbon scores)

<table>
<thead>
<tr>
<th>Fuel Type</th>
<th>Greenhouse Gas Emissions (MTCO₂e) / 40,000 vehicle miles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diesel (B5)</td>
<td></td>
</tr>
<tr>
<td>B20</td>
<td></td>
</tr>
<tr>
<td>R20</td>
<td></td>
</tr>
<tr>
<td>R50</td>
<td></td>
</tr>
<tr>
<td>R99</td>
<td></td>
</tr>
<tr>
<td>Diesel Hybrid (B5)</td>
<td></td>
</tr>
<tr>
<td>B20</td>
<td></td>
</tr>
<tr>
<td>R20</td>
<td></td>
</tr>
<tr>
<td>R50</td>
<td></td>
</tr>
<tr>
<td>R99</td>
<td></td>
</tr>
<tr>
<td>Gasoline Shuttle (E10)</td>
<td></td>
</tr>
<tr>
<td>Battery Electric</td>
<td></td>
</tr>
<tr>
<td>CNG</td>
<td></td>
</tr>
<tr>
<td>RNG</td>
<td></td>
</tr>
</tbody>
</table>

KEY LESSONS:
- Opportunity abounds to reduce fleet emissions.
- LTD will study the opportunities in detail in 2020 for long-term fleet plan.
KEY LESSON:
- Bus manufacturing and construction projects represent between 40-80% of supply chain emissions.
Q&A? Thank you!

Kelly Hoell
Sustainability Program Manager
541-682-6146
Kelly.hoell@ltd.org